Co-feeding transmission leads to bi-stability of tick-borne disease spread dynamics

Author:

Zhang Xue,Wu Jianhong

Abstract

Considering that co-feeding transmission depends on the loads of infected ticks on each host, we develop a tick-borne disease dynamics model with co-feeding transmission probability peaking at an intermediate level of infected tick loads. We stratify tick and host population by their infection status and divide the vector population in terms of infection status and post-egg stages (larvae, nymphs and adults). We use the tick population dynamics and disease spread basic reproduction numbers and co-feeding transmission characteristics to describe the disease endemic structure, and show, for the first time, that density-dependent co-feeding transmission provides a novel mechanism for bi-stability. Numerical simulations based on parameters from laboratory and fields data confirm the possibility of bi-stability in biologically realistic settings, and sensitivity analyses show that the nymphal tick load value at which the co-feeding transmission probability reaches the maximum impacts most significantly on the stable endemic equilibrium value.

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3