Improved inequalities between Dirichlet and Neumann eigenvalues of the biharmonic operator

Author:

Lotoreichik Vladimir

Abstract

We prove that the ( k + d ) (k+d) -th Neumann eigenvalue of the biharmonic operator on a bounded connected d d -dimensional ( d 2 ) (d\ge 2) Lipschitz domain is not larger than its k k -th Dirichlet eigenvalue for all k N k\in \mathbb {N} . For a special class of domains with symmetries we obtain a stronger inequality. Namely, for this class of domains, we prove that the ( k + d + 1 ) (k+d+1) -th Neumann eigenvalue of the biharmonic operator does not exceed its k k -th Dirichlet eigenvalue for all k N k\in \mathbb {N} . In particular, in two dimensions, this special class consists of domains having an axis of symmetry.

Funder

Grantová Agentura České Republiky

Publisher

American Mathematical Society (AMS)

Reference34 articles.

1. On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions;Ashbaugh, Mark S.;Duke Math. J.,1995

2. Symmetry theorems related to Pompeiu’s problem;Aviles, Patricio;Amer. J. Math.,1986

3. An inverse problem of Calderón type with partial data;Behrndt, Jussi;Comm. Partial Differential Equations,2012

4. Extremal eigenvalues of the Dirichlet biharmonic operator on rectangles;Buoso, D.;Proc. Amer. Math. Soc.,2020

5. The Bilaplacian with Robin boundary conditions;Buoso, Davide;SIAM J. Math. Anal.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3