Negative eigenvalues of the conformal Laplacian

Author:

Henry Guillermo,Petean Jimmy

Abstract

Let M M be a closed differentiable manifold of dimension at least 3 3 . Let Λ 0 ( M ) \Lambda _0 (M) be the minimum number of non-positive eigenvalues that the conformal Laplacian of a metric on M M can have. We prove that for any k k greater than or equal to Λ 0 ( M ) \Lambda _0 (M) , there exists a Riemannian metric on M M such that its conformal Laplacian has exactly k k negative eigenvalues. Also, we discuss upper bounds for Λ 0 ( M ) \Lambda _0 (M) .

Publisher

American Mathematical Society (AMS)

Reference24 articles.

1. Springer Monographs in Mathematics;Aubin, Thierry,1998

2. Canonical metrics on 3-manifolds and 4-manifolds;Anderson, Michael T.;Asian J. Math.,2006

3. Small eigenvalues of the conformal Laplacian;Bär, C.;Geom. Funct. Anal.,2003

4. Conformal invariants from nodal sets. I. Negative eigenvalues and curvature prescription;Canzani, Yaiza;Int. Math. Res. Not. IMRN,2014

5. On variations of metrics;Elíasson, Halldór I.;Math. Scand.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3