Classifying solutions of 𝑆𝑈(𝑛+1) Toda system around a singular source

Author:

Mu Jingyu,Shi Yiqian,Sun Tianyang,Xu Bin

Abstract

Consider a positive integer n n and γ 1 > 1 , , γ n > 1 \gamma _1>-1,\cdots ,\gamma _n>-1 . Let D = { z C : | z | > 1 } D=\{z\in \mathbb {C}:|z|>1\} , and let ( a i j ) n × n (a_{ij})_{n\times n} denote the Cartan matrix of s u ( n + 1 ) \frak {su}(n+1) . Utilizing the ordinary differential equation of ( n + 1 ) (n+1) th order around a singular source of S U ( n + 1 ) {SU}(n+1) Toda system, as discovered by Lin-Wei-Ye [Invent. Math. 190 (2012), pp. 169–207], we precisely characterize a solution ( u 1 , , u n ) (u_1,\cdots , u_n) to the S U ( n + 1 ) {SU}(n+1) Toda system { 2 u i z z ¯ + j = 1 n a i j e u j a m p ; = π γ i δ 0  on  D 1 2 D { 0 } e u i d z d z ¯ a m p ; > for all i = 1 , , n \begin{equation*} \begin {cases} \frac {\partial ^2 u_i}{\partial z\partial \bar z}+\sum _{j=1}^n a_{ij} e^{u_j}&=\pi \gamma _i\delta _0\text { on } D\\ \frac {\sqrt {-1}}{2}\,\int _{D\backslash \{0\}} e^{u_{i} }{d}z\wedge {d}\bar z &> \infty \end{cases} \quad \text {for all}\quad i=1,\cdots , n \end{equation*} using ( n + 1 ) (n+1) holomorphic functions that satisfy the normalized condition. Additionally, we demonstrate that for each 1 i n 1\leq i\leq n , 0 0 represents the cone singularity with angle 2 π ( 1 + γ i ) 2\pi (1+\gamma _i) for the metric e u i | d z | 2 e^{u_i}|{d}z|^2 on D { 0 } D\backslash \{0\} , which can be locally characterized by ( n 1 ) (n-1) non-vanishing holomorphic functions at 0 0 .

Publisher

American Mathematical Society (AMS)

Reference17 articles.

1. International Series in Pure and Applied Mathematics;Ahlfors, Lars V.,1978

2. Surfaces of mean curvature one in hyperbolic space;Bryant, Robert L.;Ast\'{e}risque,1987

3. Zhijie Chen and Chang-Shou Lin, Sharp results for 𝑠𝑢(3) toda system with critical parameters and monodromy of a third order linear ode, Preprint.

4. Asymptotic radial symmetry for solutions of Δ𝑢+𝑒^{𝑢}=0 in a punctured disc;Chou, K. S.;Pacific J. Math.,1994

5. Holomorphic curves and Toda systems;Doliwa, Adam;Lett. Math. Phys.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3