Zeros of a growing number of derivatives of random polynomials with independent roots

Author:

Michelen Marcus,Vu Xuan-Truong

Abstract

Let X 1 , X 2 , X_1,X_2,\ldots be independent and identically distributed random variables in C {\mathbb {C}} chosen from a probability measure μ \mu and define the random polynomial P n ( z ) = ( z X 1 ) ( z X n ) . \begin{align*} P_n(z)=(z-X_1)\ldots (z-X_n)\,. \end{align*} We show that for any sequence k = k ( n ) k = k(n) satisfying k log n / ( 5 log log n ) k \leq \log n / (5 \log \log n) , the zeros of the k k th derivative of P n P_n are asymptotically distributed according to the same measure μ \mu . This extends work of Kabluchko, which proved the k = 1 k = 1 case, as well as Byun, Lee and Reddy [Trans. Amer. Math. Soc. 375, pp. 6311–6335] who proved the fixed k k case.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference21 articles.

1. On the dynamics of the roots of polynomials under differentiation;Alazard, Thomas;J. Math. Pures Appl. (9),2022

2. J. Angst, D. Malicet, and G. Poly, Almost sure behavior of the critical points of random polynomials, Preprint, arXiv:2301.06973, 2023.

3. Zeros of random polynomials and their higher derivatives;Byun, Sung-Soo;Trans. Amer. Math. Soc.,2022

4. P. Cheung, T. Ng, and S. Yam, Critical points of random finite blaschke products with independent and identically distributed zeros, Complex Analysis and Potential Theory with Applications, Cambridge Scientific Publishers Ltd, 2014.

5. Higher-order, polar and Sz.-Nagy’s generalized derivatives of random polynomials with independent and identically distributed zeros on the unit circle;Cheung, Pak-Leong;Comput. Methods Funct. Theory,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3