Constructing Weyl group multiple Dirichlet series

Author:

Chinta Gautam,Gunnells Paul

Abstract

Let Φ \Phi be a reduced root system of rank r r . A Weyl group multiple Dirichlet series for Φ \Phi is a Dirichlet series in r r complex variables s 1 , , s r s_1,\dots ,s_r , initially converging for R e ( s i ) \mathrm {Re}(s_i) sufficiently large, that has meromorphic continuation to C r {\mathbb C}^r and satisfies functional equations under the transformations of C r {\mathbb C}^r corresponding to the Weyl group of Φ \Phi . A heuristic definition of such a series was given by Brubaker, Bump, Chinta, Friedberg, and Hoffstein, and they have been investigated in certain special cases by others. In this paper we generalize results by Chinta and Gunnells to construct Weyl group multiple Dirichlet series by a uniform method and show in all cases that they have the expected properties.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference31 articles.

1. On Kubota’s Dirichlet series;Brubaker, Ben;J. Reine Angew. Math.,2006

2. Residues of Weyl group multiple Dirichlet series associated to ̃𝐺𝐿_{𝑛+1};Brubaker, Benjamin,2006

3. Weyl group multiple Dirichlet series. I;Brubaker, Benjamin,2006

4. [BBFa] B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Submitted.

5. [BBFb] B. Brubaker, D. Bump, and S. Friedberg. Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory. Submitted.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iwahori‐metaplectic duality;Journal of the London Mathematical Society;2024-05-23

2. Twisted Weyl group multiple Dirichlet series over the rational function field;Journal of Number Theory;2023-12

3. Planes in Z4$\mathbb {Z}^4$ and Eisenstein series;Journal of the London Mathematical Society;2023-09

4. Local Coefficients and Gamma Factors for Principal Series of Covering Groups;Memoirs of the American Mathematical Society;2023-03

5. A combinatorial formula for Sahi, Stokman, and Venkateswaran's generalization of Macdonald polynomials;Advances in Mathematics;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3