The “hot spots” conjecture for domains with two axes of symmetry

Author:

Jerison David,Nadirashvili Nikolai

Abstract

Consider a Neumann eigenfunction with lowest nonzero eigenvalue of a convex planar domain with two axes of symmetry. We show that the maximum and minimum of the eigenfunction are achieved at points on the boundary only. We deduce J. Rauch’s “hot spots” conjecture: if the initial temperature distribution is not orthogonal to the first nonzero eigenspace, then the point at which the temperature achieves its maximum tends to the boundary. This was already proved by Bañuelos and Burdzy in the case in which the eigenspace is one dimensional. We introduce here a new technique based on deformations of the domain that applies to the case of multiple eigenvalues.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. [BB]BB R. Bañuelos and K. Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal. 164 (1999), 1–33.

2. [BaB]BaB R. Bass and K. Burdzy, Fiber Brownian motion and the “hot spots” problem, preprint.

3. [Bl]Bl T. Bulfinch, Bulfinch’s mythology, Harper Collins, New York, 1991.

4. A counterexample to the “hot spots” conjecture;Burdzy, Krzysztof;Ann. of Math. (2),1999

5. On Frobeniusean algebras. I;Nakayama, Tadasi;Ann. of Math. (2),1939

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consistent inference for diffusions from low frequency measurements;The Annals of Statistics;2024-04-01

2. A Variational Approach to the Hot Spots Conjecture;Trends in Mathematics;2024

3. Bounds for exit times of Brownian motion and the first Dirichlet eigenvalue for the Laplacian;Transactions of the American Mathematical Society;2023-04-03

4. Geometric Structures of Laplacian Eigenfunctions;Spectral Geometry and Inverse Scattering Theory;2023

5. Improved Upper Bounds for the Hot Spots Constant of Lipschitz Domains;Potential Analysis;2022-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3