Tug-of-war and the infinity Laplacian

Author:

Peres Yuval,Schramm Oded,Sheffield Scott,Wilson David

Abstract

We prove that every bounded Lipschitz function F F on a subset Y Y of a length space X X admits a tautest extension to X X , i.e., a unique Lipschitz extension u : X R u:X \rightarrow \mathbb {R} for which Lip U u = Lip U u \operatorname {Lip}_U u =\operatorname {Lip}_{\partial U} u for all open U X Y U \subset X\smallsetminus Y . This was previously known only for bounded domains in R n \mathbb {R}^n , in which case u u is infinity harmonic; that is, a viscosity solution to Δ u = 0 \Delta _\infty u = 0 , where \[ Δ u = | u | 2 i , j u x i u x i x j u x j . \Delta _\infty u = |\nabla u|^{-2} \sum _{i,j} u_{x_i} u_{x_ix_j} u_{x_j}. \] We also prove the first general uniqueness results for Δ u = g \Delta _{\infty } u = g on bounded subsets of R n \mathbb {R}^n (when g g is uniformly continuous and bounded away from 0 0 ) and analogous results for bounded length spaces. The proofs rely on a new game-theoretic description of u u . Let u ε ( x ) u^\varepsilon (x) be the value of the following two-player zero-sum game, called tug-of-war: fix x 0 = x X Y x_0=x\in X \smallsetminus Y . At the k t h k^{\mathrm {th}} turn, the players toss a coin and the winner chooses an x k x_k with d ( x k , x k 1 ) > ε d(x_k, x_{k-1})> \varepsilon . The game ends when x k Y x_k \in Y , and player I’s payoff is F ( x k ) ε 2 2 i = 0 k 1 g ( x i ) F(x_k) - \frac {\varepsilon ^2}{2}\sum _{i=0}^{k-1} g(x_i) . We show that u ε u 0 \|u^\varepsilon - u\|_{\infty } \to 0 . Even for bounded domains in R n \mathbb {R}^n , the game theoretic description of infinity harmonic functions yields new intuition and estimates; for instance, we prove power law bounds for infinity harmonic functions in the unit disk with boundary values supported in a δ \delta -neighborhood of a Cantor set on the unit circle.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On aspects of the normalized Infinity Laplacian on Finsler manifolds;Nonlinear Analysis;2024-09

2. Jacobian determinants for nonlinear gradient of planar ∞-harmonic functions and applications;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-04-11

3. Asymptotic estimates of large solutions to the infinity Laplacian equations;Zeitschrift für angewandte Mathematik und Physik;2024-04

4. VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH SINGULAR NONLINEAR TERMS;Journal of the Australian Mathematical Society;2024-03-20

5. Monotone iterations of two obstacle problems with different operators;Journal of Elliptic and Parabolic Equations;2024-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3