Flat vector bundles, direct images and higher real analytic torsion

Author:

Bismut Jean-Michel,Lott John

Abstract

We prove a Riemann-Roch-Grothendieck-type theorem concerning the direct image of a flat vector bundle under a submersion of smooth manifolds. We refine this theorem to the level of differential forms. We construct associated secondary invariants, the analytic torsion forms, which coincide in degree 0 with the Ray-Singer real analytic torsion. Résumé. On démontre un analogue du théorème de Riemann-Roch-Grothendieck pour l’image directe d’un fibré plat par une submersion. On raffine ce théorème au niveau des formes différentielles. On construit des invariants secondaires, les formes de torsion analytique, qui coïncident, en degré 0, avec la torsion de Ray-Singer.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs;Bismut, Jean-Michel;Invent. Math.,1986

2. 𝜂-invariants and their adiabatic limits;Bismut, Jean-Michel;J. Amer. Math. Soc.,1989

3. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Besse, Arthur L.,1987

4. Quillen metrics and higher analytic torsion forms;Berthomieu, Alain;J. Reine Angew. Math.,1994

5. Transfer maps for fibrations and duality;Becker, J. C.;Compositio Math.,1976

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparison of the absolute and relative real analytic torsion forms;Annals of Global Analysis and Geometry;2024-08-16

2. A Cheeger-Müller Theorem for Delocalized L2-analytic Torsion Form;Acta Mathematica Sinica, English Series;2024-05-20

3. Toeplitz operators and the full asymptotic torsion forms;Journal of Functional Analysis;2024-02

4. The asymptotics of the holomorphic analytic torsion forms;Journal of the London Mathematical Society;2023-04-19

5. The non-abelian Hodge correspondence on some non-Kähler manifolds;Science China Mathematics;2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3