Universal characteristic factors and Furstenberg averages

Author:

Ziegler Tamar

Abstract

Let X = ( X 0 , B , μ , T ) X=(X^0,\mathcal {B},\mu ,T) be an ergodic probability measure-preserving system. For a natural number k k we consider the averages (*) 1 N n = 1 N j = 1 k f j ( T a j n x ) \begin{equation*} \tag {*} \frac {1}{N}\sum _{n=1}^N \prod _{j=1}^k f_j(T^{a_jn}x) \end{equation*} where f j L ( μ ) f_j \in L^{\infty }(\mu ) , and a j a_j are integers. A factor of X X is characteristic for averaging schemes of length k k (or k k -characteristic) if for any nonzero distinct integers a 1 , , a k a_1,\ldots ,a_k , the limiting L 2 ( μ ) L^2(\mu ) behavior of the averages in (*) is unaltered if we first project the functions f j f_j onto the factor. A factor of X X is a k k -universal characteristic factor ( k k -u.c.f.) if it is a k k -characteristic factor, and a factor of any k k -characteristic factor. We show that there exists a unique k k -u.c.f., and it has the structure of a ( k 1 ) (k-1) -step nilsystem, more specifically an inverse limit of ( k 1 ) (k-1) -step nilflows. Using this we show that the averages in (*) converge in L 2 ( μ ) L^2(\mu ) . This provides an alternative proof to the one given by Host and Kra.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference33 articles.

1. Weakly mixing PET;Bergelson, V.;Ergodic Theory Dynam. Systems,1987

2. London Mathematical Society Lecture Note Series;Becker, Howard,1996

3. Pointwise ergodic theorems for arithmetic sets;Bourgain, Jean;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1989

4. Théorèmes ergodiques pour des mesures diagonales;Conze, Jean-Pierre;Bull. Soc. Math. France,1984

5. Sur un théorème ergodique pour des mesures diagonales;Conze, Jean-Pierre,1988

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degree lowering for ergodic averages along arithmetic progressions;Journal d'Analyse Mathématique;2024-09-12

2. On the maximal spectral type of nilsystems;Proceedings of the American Mathematical Society, Series B;2024-09-12

3. Host–Kra factors for ⊕p∈Pℤ∕pℤ actions and finite-dimensional nilpotent systems;Analysis & PDE;2024-08-21

4. The structure of arbitrary Conze–Lesigne systems;Communications of the American Mathematical Society;2024-02-21

5. Polynomial orbits in totally minimal systems;Advances in Mathematics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3