Non-commutative circuits and the sum-of-squares problem

Author:

Hrubeš Pavel,Wigderson Avi,Yehudayoff Amir

Abstract

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of non-commutative arithmetic circuits and a problem about commutative degree-four polynomials, the classical sum-of-squares problem: find the smallest n n such that there exists an identity ( 0.1 ) ( x 1 2 + x 2 2 + + x k 2 ) ( y 1 2 + y 2 2 + + y k 2 ) = f 1 2 + f 2 2 + + f n 2 , \begin{equation*} (0.1)\quad \quad (x_1^2+x_2^2+\cdots + x_k^2)\cdot (y_1^2+y_2^2+\cdots + y_k^2)= f_{1}^{2}+f_{2}^{2}+\dots +f_{n}^{2} , \quad \quad \end{equation*} where each f i = f i ( X , Y ) f_{i} = f_i(X,Y) is a bilinear form in X = { x 1 , , x k } X=\{x_{1},\dots ,x_{k}\} and Y = { y 1 , , y k } Y=\{y_{1},\dots , y_{k}\} . Over the complex numbers, we show that a sufficiently strong superlinear lower bound on n n in (0.1), namely, n k 1 + ϵ n\geq k^{1+\epsilon } with ϵ > 0 \epsilon >0 , implies an exponential lower bound on the size of arithmetic circuits computing the non-commutative permanent.

More generally, we consider such sum-of-squares identities for any biqua- dratic polynomial h ( X , Y ) h(X,Y) , namely ( 0.2 ) h ( X , Y ) = f 1 2 + f 2 2 + + f n 2 . \begin{equation*} (0.2) \quad \quad \qquad \quad \quad \quad \quad h(X,Y) = f_{1}^{2}+f_{2}^{2}+\dots +f_{n}^{2} . \quad \quad \qquad \quad \quad \quad \quad \end{equation*} Again, proving n k 1 + ϵ n\geq k^{1+\epsilon } in (0.2) for any explicit h h over the complex numbers gives an exponential lower bound for the non-commutative permanent. Our proofs rely on several new structure theorems for non-commutative circuits, as well as a non-commutative analog of Valiant’s completeness of the permanent.

We prove such a superlinear bound in one special case. Over the real numbers, we construct an explicit biquadratic polynomial h h such that n n in (0.2) must be at least Ω ( k 2 ) \Omega (k^{2}) . Unfortunately, this result does not imply circuit lower bounds. We also present other structural results about non-commutative arithmetic circuits. We show that any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential lower bound on the size of a non-commutative syntactically multilinear circuit computing an explicit polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does not follow.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3