A combinatorial formula for Macdonald polynomials

Author:

Haglund J.,Haiman M.,Loehr N.

Abstract

We prove a combinatorial formula for the Macdonald polynomial H ~ μ ( x ; q , t ) \tilde {H}_{\mu }(x;q,t) which had been conjectured by Haglund. Corollaries to our main theorem include the expansion of H ~ μ ( x ; q , t ) \tilde {H}_{\mu }(x;q,t) in terms of LLT polynomials, a new proof of the charge formula of Lascoux and Schützenberger for Hall-Littlewood polynomials, a new proof of Knop and Sahi’s combinatorial formula for Jack polynomials as well as a lifting of their formula to integral form Macdonald polynomials, and a new combinatorial rule for the Kostka-Macdonald coefficients K ~ λ μ ( q , t ) \tilde {K}_{\lambda \mu }(q,t) in the case that μ \mu is a partition with parts 2 \leq 2 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. Butler86 Lynne M. Butler, Combinatorial properties of partially ordered sets associated with partitions and finite abelian groups, Ph.D. thesis, Massachusetts Institute of Technology, 1986.

2. Subgroup lattices and symmetric functions;Butler, Lynne M.;Mem. Amer. Math. Soc.,1994

3. Splitting the square of a Schur function into its symmetric and antisymmetric parts;Carré, Christophe;J. Algebraic Combin.,1995

4. Statistics for special 𝑞,𝑡-Kostka polynomials;Fishel, Susanna;Proc. Amer. Math. Soc.,1995

5. Affine Hecke algebras and raising operators for Macdonald polynomials;Kirillov, Anatol N.;Duke Math. J.,1998

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials;Journal of Combinatorial Theory, Series A;2024-10

2. Modified Macdonald polynomials and the multispecies zero range process: II;Mathematische Zeitschrift;2024-09-13

3. Colored vertex models and Iwahori Whittaker functions;Selecta Mathematica;2024-09

4. Bijections between different combinatorial models for q-Whittaker and modified Hall-Littlewood polynomials;Indian Journal of Pure and Applied Mathematics;2024-04-24

5. LLT polynomials in the Schiffmann algebra;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3