Homological methods for hypergeometric families

Author:

Matusevich Laura,Miller Ezra,Walther Uli

Abstract

We analyze the behavior of the holonomic rank in families of holonomic systems over complex algebraic varieties by providing homological criteria for rank-jumps in this general setting. Then we investigate rank-jump behavior for hypergeometric systems  H A ( β ) H_A(\beta ) arising from a d × n d \times n integer matrix  A A and a parameter β C d \beta \in \mathbb {C}^d . To do so we introduce an Euler–Koszul functor for hypergeometric families over  C d \mathbb {C}^d , whose homology generalizes the notion of a hypergeometric system, and we prove a homology isomorphism with our general homological construction above. We show that a parameter β C d \beta \in \mathbb {C}^d is rank-jumping for H A ( β ) H_A(\beta ) if and only if β \beta lies in the Zariski closure of the set of C d \mathbb {C}^d -graded degrees  α \alpha where the local cohomology i > d H m i ( C [ N A ] ) α \bigoplus _{i > d} H^i_\mathfrak m(\mathbb {C}[\mathbb {N} A])_\alpha of the semigroup ring C [ N A ] \mathbb {C}[\mathbb {N} A] supported at its maximal graded ideal  m \mathfrak m is nonzero. Consequently, H A ( β ) H_A(\beta ) has no rank-jumps over  C d \mathbb {C}^d if and only if C [ N A ] \mathbb {C}[\mathbb {N} A] is Cohen–Macaulay of dimension  d d .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. Hypergeometric functions and rings generated by monomials;Adolphson, Alan;Duke Math. J.,1994

2. Higher solutions of hypergeometric systems and Dwork cohomology;Adolphson, Alan;Rend. Sem. Mat. Univ. Padova,1999

3. Cambridge Studies in Advanced Mathematics;Bruns, Winfried,1993

4. North-Holland Mathematical Library;Björk, J.-E.,1979

5. The 𝒜-hypergeometric system associated with a monomial curve;Cattani, Eduardo;Duke Math. J.,1999

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Cohen–Macaulay modules over the Weyl algebra;International Journal of Algebra and Computation;2024-06

2. On hypergeometric duality conjecture;Advances in Mathematics;2024-04

3. Symbol alphabets from the Landau singular locus;Journal of High Energy Physics;2023-10-25

4. Cohen-Macaulay Property of Feynman Integrals;Communications in Mathematical Physics;2022-12-10

5. On Feynman graphs, matroids, and GKZ-systems;Letters in Mathematical Physics;2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3