We introduce a new technique that is used to show that the complex projective plane blown up at 6, 7, or 8 points has infinitely many distinct smooth structures. None of these smooth structures admits smoothly embedded spheres with self-intersection
−
1
-1
, i.e., they are minimal. In addition, none of these smooth structures admits an underlying symplectic structure. Shortly after the appearance of a preliminary version of this article, Park, Stipsicz, and Szabo used the techniques described herein to show that the complex projective plane blown up at 5 points has infinitely many distinct smooth structures. In the final section of this paper we give a construction of such a family of examples.