Pythagoras numbers of fields

Author:

Hoffmann Detlev

Abstract

A field F F of characteristic 2 \neq 2 is said to have finite Pythagoras number if there exists an integer m 1 m\geq 1 such that each nonzero sum of squares in F F can be written as a sum of m \leq m squares, in which case the Pythagoras number p ( F ) p(F) of F F is defined to be the least such integer. As a consequence of Pfister’s results on the level of fields, p ( F ) p(F) of a nonformally real field F F is always of the form 2 n 2^n or 2 n + 1 2^n+1 , and all integers of such type can be realized as Pythagoras numbers of nonformally real fields. Prestel showed that values of the form 2 n 2^n , 2 n + 1 2^n+1 , and \infty can always be realized as Pythagoras numbers of formally real fields. We will show that in fact to every integer n 1 n\geq 1 there exists a formally real field F F with p ( F ) = n p(F)=n . As a refinement, we will show that if n , m 2 n,m\geq 2 and k 1 k\geq 1 are integers such that 2 m 2 k n 2m\geq 2^{k}\geq n , then there exists a uniquely ordered field F F with p ( F ) = n p(F)=n and u ( F ) = u ~ ( F ) = 2 m u(F)=\tilde {u}(F)=2m (resp. u ( F ) = u ~ ( F ) = u(F)=\tilde {u}(F)=\infty ), where u u (resp. u ~ \tilde {u} ) denotes the supremum of the dimensions of anisotropic forms over F F which are torsion in the Witt ring of F F (resp. which are indefinite with respect to each ordering on F F ).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. [A] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Semin. Hamburg. Univ. 5 (1927) 100–115.

2. On sums of squares and on elliptic curves over function fields;Cassels, J. W. S.;J. Number Theory,1971

3. Pfister forms and 𝐾-theory of fields;Elman, Richard;J. Algebra,1972

4. On some Hasse principles over formally real fields;Elman, Richard;Math. Z.,1973

5. Orderings under field extensions;Elman, R.;J. Reine Angew. Math.,1979

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Waring numbers of henselian rings;Mathematika;2024-08-25

2. Bounding the Pythagoras number of a field by 2  + 1;Journal of Pure and Applied Algebra;2024-06

3. Sums of Squares on Hypersurfaces;Results in Mathematics;2024-02-05

4. On the Pythagoras number of function fields of curves over number fields;Israel Journal of Mathematics;2023-11

5. Pythagoras numbers of orders in biquadratic fields;Expositiones Mathematicae;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3