Sensitivity analysis of an inverse problem for the wave equation with caustics

Author:

Bao Gang,Zhang Hai

Abstract

The paper investigates the sensitivity of the inverse problem of recovering the velocity field in a bounded domain from the boundary dynamic Dirichlet-to-Neumann map (DDtN) for the wave equation. Three main results are obtained: (1) assuming that two velocity fields are non-trapping and are equal to a constant near the boundary, it is shown that the two induced scattering relations must be identical if their corresponding DDtN maps are sufficiently close; (2) a geodesic X-ray transform operator with matrix-valued weight is introduced by linearizing the operator which associates each velocity field with its induced Hamiltonian flow. A selected set of geodesics whose conormal bundle can cover the cotangent space at an interior point is used to recover the singularity of the X-ray transformed function at the point; a local stability estimate is established for this case. Although fold caustics are allowed along these geodesics, it is required that these caustics contribute to a smoother term in the transform than the point itself. The existence of such a set of geodesics is guaranteed under some natural assumptions in dimensions greater than or equal to three by the classification result on caustics and regularity theory of Fourier Integral Operators. The interior point with the above required set of geodesics is called “fold-regular”. (3) Assuming that a background velocity field with every interior point fold-regular is fixed and another velocity field is sufficiently close to it and satisfies a certain orthogonality condition, it is shown that if the two corresponding DDtN maps are sufficiently close then they must be equal.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. Stability for a multidimensional inverse spectral theorem;Alessandrini, Giovanni;Comm. Partial Differential Equations,1990

2. Gaussian beams summation for the wave equation in a convex domain;Bougacha, Salma;Commun. Math. Sci.,2009

3. London Mathematical Society Lecture Note Series;Arnol′d, V. I.,1981

4. Monographs in Mathematics;Arnol′d, V. I.,1985

5. A convergent multiscale Gaussian-beam parametrix for the wave equation;Bao, Gang;Comm. Partial Differential Equations,2013

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3