Mach configuration in pseudo-stationary compressible flow

Author:

Chen Shuxing

Abstract

This paper is devoted to studying the local structure of Mach reflection, which occurs in the problem of the shock front hitting a ramp. The compressible flow is described by the full unsteady Euler system of gas dynamics. Because of the special geometry, the motion of the fluid can be described by self-similar coordinates, so that the unsteady flow becomes a pseudo-stationary flow in this coordinate system. When the slope of the ramp is less than a critical value, the Mach reflection occurs. The wave configuration in Mach reflection is composed of three shock fronts and a slip line bearing contact discontinuity. The local existence of a flow field with such a configuration under some assumptions is proved in this paper. Our result confirms the reasonableness of the corresponding physical observations and numerical computations in Mach reflection. In order to prove the result, we formulate the problem to a free boundary value problem of a pseudo-stationary Euler system. In this problem two unknown shock fronts are the free boundary, and the slip line is also an unknown curve inside the flow field. The proof contains some crucial ingredients. The slip line will be transformed to a fixed straight line by a generalized Lagrange transformation. The whole free boundary value problem will be decomposed to a fixed boundary value problem of the Euler system and a problem to updating the location of the shock front. The Euler system in the subsonic region is an elliptic-hyperbolic composite system, which will be decoupled to the elliptic part and the hyperbolic part at the level of principal parts. Then some sophisticated estimates and a suitable iterative scheme are established. The proof leads to the existence and stability of the local structure of Mach reflection.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3