Compositional sparsity of learnable functions

Author:

Poggio Tomaso,Fraser Maia

Abstract

Neural networks have demonstrated impressive success in various domains, raising the question of what fundamental principles underlie the effectiveness of the best AI systems and quite possibly of human intelligence. This perspective argues that compositional sparsity, or the property that a compositional function have “few” constituent functions, each depending on only a small subset of inputs, is a key principle underlying successful learning architectures. Surprisingly, all functions that are efficiently Turing computable have a compositional sparse representation. Furthermore, deep networks that are also sparse can exploit this general property to avoid the “curse of dimensionality”. This framework suggests interesting implications about the role that machine learning may play in mathematics.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference39 articles.

1. Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions;Bachmayr, Markus;Pure Appl. Funct. Anal.,2023

2. Alexander Bastounis, Anders C Hansen, and Verner Vlačić, The extended smale’s 9th problem – on computational barriers and paradoxes in estimation, regularisation, computer-assisted proofs and learning, 2021.

3. On deep learning as a remedy for the curse of dimensionality in nonparametric regression;Bauer, Benedikt;Ann. Statist.,2019

4. Limitations of deep learning for inverse problems on digital hardware;Boche, Holger;IEEE Trans. Inform. Theory,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3