Co-𝑡-structures on derived categories of coherent sheaves and the cohomology of tilting modules

Author:

Achar Pramod,Hardesty William

Abstract

We construct a co- t t -structure on the derived category of coherent sheaves on the nilpotent cone N \mathcal {N} of a reductive group, as well as on the derived category of coherent sheaves on any parabolic Springer resolution. These structures are employed to show that the push-forwards of the “exotic parity objects” (considered by Achar, Hardesty, and Riche [Transform. Groups 24 (2019), pp. 597–657]), along the (classical) Springer resolution, give indecomposable objects inside the coheart of the co- t t -structure on N \mathcal {N} . We also demonstrate how the various parabolic co- t t -structures can be related by introducing an analogue to the usual translation functors. As an application, we give a proof of a scheme-theoretic formulation of the relative Humphreys conjecture on support varieties of tilting modules in type A A for p > h p>h .

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference34 articles.

1. Perverse coherent sheaves on the nilpotent cone in good characteristic;Achar, Pramod N.,2012

2. On exotic and perverse-coherent sheaves;Achar, Pramod N.,2015

3. The parabolic exotic 𝑡-structure;Achar, Pramod N.;\'{E}pijournal G\'{e}om. Alg\'{e}brique,2018

4. Calculations with graded perverse-coherent sheaves;Achar, Pramod N.;Q. J. Math.,2019

5. [AH2] P. Achar and W. Hardesty, Silting complexes of coherent sheaves and the Humphreys conjecture, arXiv:2106.04268, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3