In this paper, we derive a necessary condition for a best approximation by piecewise polynomial functions. We apply nonsmooth nonconvex analysis to obtain this result, which is also a necessary and sufficient condition for inf-stationarity in the sense of Demyanov-Rubinov. We start from identifying a special property of the knots. Then, using this property, we construct a characterisation theorem for best free-knots polynomial spline approximation, which is stronger than the existing characterisation results, at least in the case when only continuity is required.