Mean curvature, volume and properness of isometric immersions

Author:

Gimeno Vicent,Palmer Vicente

Abstract

We explore the relation among volume, curvature and properness of an m m -dimensional isometric immersion in a Riemannian manifold. We show that, when the L p L^p -norm of the mean curvature vector is bounded for some m p m \leq p\leq \infty , and the ambient manifold is a Riemannian manifold with bounded geometry, properness is equivalent to the finiteness of the volume of extrinsic balls. We also relate the total absolute curvature of a surface isometrically immersed in a Riemannian manifold with its properness. Finally, we relate the curvature and the topology of a complete and non-compact 2 2 -Riemannian manifold M M with non-positive Gaussian curvature and finite topology, using the study of the focal points of the transverse Jacobi fields to a geodesic ray in M M . In particular, we have explored the relation between the minimal focal distance of a geodesic ray and the total curvature of an end containing that geodesic ray.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. [1] M. T. Anderson, The compactification of a minimal submanifold by the Gauss Map., Preprint IEHS (1984).

2. Complete submanifolds of ℝⁿ with finite topology;Pacelli Bessa, G.;Comm. Anal. Geom.,2007

3. On submanifolds with tamed second fundamental form;Pacelli Bessa, G.;Glasg. Math. J.,2009

4. An elementary proof of the Jordan-Schoenflies theorem;Cairns, Stewart S.;Proc. Amer. Math. Soc.,1951

5. [5] E. Calabi, Problems in differential geometry, S. Kobayashi and J. Eells, Jr., eds., Proc. of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoronsha Co., Ltd., Tokyo, 1966.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The spectrum of the Laplacian and volume growth of proper minimal submanifolds;Mathematische Zeitschrift;2022-03-07

2. Upper bounds for the Poincaré recurrence time in quantum mixed states;Journal of Physics A: Mathematical and Theoretical;2017-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3