Let
σ
\sigma
and
τ
\tau
denote a pair of absolutely irreducible
p
p
-ordinary and
p
p
-distinguished Galois representations into
GL
2
(
F
¯
p
)
\operatorname {GL}_2(\overline {\mathbb {F}}_p)
. Given two primitive forms
(
f
,
g
)
(f,g)
such that
wt
(
f
)
>
wt
(
g
)
>
1
\operatorname {wt}(f)>\operatorname {wt}(g)> 1
and where
ρ
¯
f
≅
σ
\overline {\rho }_f\cong \sigma
and
ρ
¯
g
≅
τ
\overline {\rho }_g\cong \tau
, we show that the Iwasawa Main Conjecture for the double product
ρ
f
⊗
ρ
g
\rho _f\otimes \rho _g
depends only on the residual Galois representation
σ
⊗
τ
:
G
Q
→
GL
4
(
F
¯
p
)
\sigma \otimes \tau : G_{\mathbb {Q}}\rightarrow \operatorname {GL}_4(\overline {\mathbb {F}}_p)
. More precisely, if IMC(
f
⊗
g
f\otimes g
) is true for one pair
(
f
,
g
)
(f,g)
with
ρ
¯
f
≅
σ
\overline {\rho }_f \cong \sigma
and
ρ
¯
g
≅
τ
\overline {\rho }_g\cong \tau
and whose
μ
\mu
-invariant equals zero, then it is true for every congruent pair too.