Lie groups with all left-invariant semi-Riemannian metrics complete

Author:

Elshafei Ahmed,Ferreira Ana Cristina,Sánchez Miguel,Zeghib Abdelghani

Abstract

For each left-invariant semi-Riemannian metric g g on a Lie group G G , we introduce the class of bi-Lipschitz Riemannian Clairaut metrics, whose completeness implies the completeness of g g . When the adjoint representation of G G satisfies an at most linear growth bound, then all the Clairaut metrics are complete for any g g . We prove that this bound is satisfied by compact and 2-step nilpotent groups, as well as by semidirect products K ρ R n K \ltimes _\rho \mathbb {R}^n , where K K is the direct product of a compact and an abelian Lie group and ρ ( K ) \rho (K) is pre-compact; they include all the known examples of Lie groups with all left-invariant metrics complete. The affine group of the real line is considered to illustrate how our techniques work even in the absence of linear growth and suggest new questions.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3