Completely degenerate lower-dimensional invariant tori in reversible systems

Author:

Jing Tianqi,Si Wen

Abstract

In this paper, we consider the persistence of completely degenerate lower-dimensional invariant tori of the following reversible system { x ˙ = ω + Q ( x ) z + ϵ P 1 ( x , z , ϵ ) , z ˙ = H ( z ) + ϵ P 2 ( x , z , ϵ ) , \begin{eqnarray*} \left \{ \begin {array}{l} \dot x=\omega +\mathcal {Q}(x)z+\epsilon \mathcal {P}^1(x,z,\epsilon ),\\ \dot z=\mathcal {H}(z)+\epsilon \mathcal P^2(x,z,\epsilon ),\\ \end{array} \right . \end{eqnarray*} where ( x , z ) = ( x , y , u , v ) T n × R m × R × R (x,z)=(x,y,u,v)\in \mathbb {T}^n\times \mathbb {R}^m\times \mathbb {R}\times \mathbb {R} with m n + 2 m\geq n+2 , H ( z ) = ( 0 , v 2 p + 1 + y m l , u y m 1 q ) T \mathcal {H}(z)=(0,v^{2p+1}+y_m^{l},uy_{m-1}^q)^T with y = ( y 1 , , y m 1 , y m ) y=(y_1,\cdots ,y_{m-1},y_{m}) , p , q 0 p,q\geq 0 , l > 0 l>0 are integers, the involution G G is ( x , y , u , v ) ( x , y , u , v ) (x,y,u,v)\rightarrow (-x,y,-u,v) , Q ( x ) \mathcal {Q}(x) is a n × m n\times m matrix function, ω \omega is a Diophantine frequency, ϵ \epsilon is a small positive parameter and ϵ P 1 , ϵ P 2 \epsilon \mathcal {P}^1,\,\,\epsilon \mathcal {P}^2 are analytic perturbation terms. By the Kolmogorov-Arnold-Moser method, we prove that for sufficiently small ϵ \epsilon the above reversible system admits lower-dimensional invariant tori with prescribed frequency ω \omega if average of a part of Q ( x ) \mathcal {Q}(x) is non-singular. This should be the first persistence result of lower-dimensional invariant tori in completely degenerate reversible systems.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. Reversible systems;Arnol′d, V. I.,1984

2. Lecture Notes in Mathematics;Broer, Hendrik W.,1996

3. Unfoldings of quasi-periodic tori in reversible systems;Broer, H. W.;J. Dynam. Differential Equations,1995

4. Normal linear stability of quasi-periodic tori;Broer, H. W.;J. Differential Equations,2007

5. The quasi-periodic reversible Hopf bifurcation;Broer, Henk W.;Internat. J. Bifur. Chaos Appl. Sci. Engrg.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3