Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group

Author:

Fässler Katrin,Orponen Tuomas,Rigot Séverine

Abstract

A Semmes surface in the Heisenberg group is a closed set S S that is upper Ahlfors-regular with codimension one and satisfies the following condition, referred to as Condition B. Every ball B ( x , r ) B(x,r) with x S x \in S and 0 > r > diam S 0 > r > \operatorname {diam} S contains two balls with radii comparable to r r which are contained in different connected components of the complement of S S . Analogous sets in Euclidean spaces were introduced by Semmes in the late 1980s. We prove that Semmes surfaces in the Heisenberg group are lower Ahlfors-regular with codimension one and have big pieces of intrinsic Lipschitz graphs. In particular, our result applies to the boundary of chord-arc domains and of reduced isoperimetric sets. The proof of the main result uses the concept of quantitative non-monotonicity developed by Cheeger, Kleiner, Naor, and Young. The approach also yields a new proof for the big pieces of Lipschitz graphs property of Semmes surfaces in Euclidean spaces.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference33 articles.

1. Tangents, rectifiability, and corkscrew domains;Azzam, Jonas;Publ. Mat.,2018

2. A new characterization of chord-arc domains;Azzam, Jonas;J. Eur. Math. Soc. (JEMS),2017

3. Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited;Badger, Matthew;Math. Z.,2012

4. Progress in Mathematics;Capogna, Luca,2007

5. Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics;Capogna, Luca;J. Fourier Anal. Appl.,1998

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3