Difference Galois groups under specialization

Author:

Feng Ruyong

Abstract

We present a difference analogue of a result given by Hrushovski on differential Galois groups under specialization. Let k k be an algebraically closed field of characteristic zero and let X \mathbb {X} be an irreducible affine algebraic variety over k k . Consider the linear difference equation σ ( Y ) = A Y , \begin{equation*} \sigma (Y)=AY, \end{equation*} where A G L n ( k ( X ) ( x ) ) A\in \mathrm {GL}_n(k(\mathbb {X})(x)) and σ \sigma is the shift operator σ ( x ) = x + 1 \sigma (x)=x+1 . Assume that the Galois group G G of the above equation over k ( X ) ¯ ( x ) \overline {k(\mathbb {X})}(x) is defined over k ( X ) k(\mathbb {X}) , i.e., the vanishing ideal of G G is generated by a finite set S k ( X ) [ X , 1 / det ( X ) ] S\subset k(\mathbb {X})[X,1/\det (X)] . For a c X {\mathbf {c}}\in \mathbb {X} , denote by v c v_{{\mathbf {c}}} the map from k [ X ] k[\mathbb {X}] to k k given by v c ( f ) = f ( c ) v_{{\mathbf {c}}}(f)=f({\mathbf {c}}) for any f k [ X ] f\in k[\mathbb {X}] . We prove that the set of c X {\mathbf {c}}\in \mathbb {X} satisfying that v c ( A ) v_{\mathbf {c}}(A) and v c ( S ) v_{\mathbf {c}}(S) are well-defined and the affine variety in G L n ( k ) \mathrm {GL}_n(k) defined by v c ( S ) v_{{\mathbf {c}}}(S) is the Galois group of σ ( Y ) = v c ( A ) Y \sigma (Y)=v_{{\mathbf {c}}}(A)Y over k ( x ) k(x) is Zariski dense in X \mathbb {X} .

We apply our result to van der Put-Singer’s conjecture which asserts that an algebraic subgroup G G of G L n ( k ) \mathrm {GL}_n(k) is the Galois group of a linear difference equation over k ( x ) k(x) if and only if the quotient G / G G/G^\circ by the identity component is cyclic. We show that if van der Put-Singer’s conjecture is true for k = C k=\mathbb {C} , then it will be true for any algebraically closed field k k of characteristic zero.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Formal theory of irregular linear difference equations;Birkhoff, George D.;Acta Math.,1930

2. Quantum integrable systems and differential Galois theory;Braverman, A.;Transform. Groups,1997

3. On the definitions of difference Galois groups;Chatzidakis, Zoé,2008

4. Galois theory of parameterized differential equations and linear differential algebraic groups;Cassidy, Phyllis J.,2007

5. Arithmetic theory of 𝑞-difference equations: the 𝑞-analogue of Grothendieck-Katz’s conjecture on 𝑝-curvatures;Di Vizio, Lucia;Invent. Math.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3