Further study on one-dimensional shock waves in nonlinear elastic media

Author:

Ting T. C. T.

Abstract

One may define the growth of a shock wave by the growth in the amplitude of discontinuity in the velocity (denoted by [ v ] \left [ v \right ] ) across the shock wave as the shock wave propagates. One may also define the growth of a shock wave by the growth in the amplitude of discontinuity in the stress [ σ ] \left [ \sigma \right ] , strain [ ϵ ] \left [ \epsilon \right ] , or entropy [ η ] \left [ \eta \right ] , It is shown that one definition predicts the growth of the shock wave while others may predict its decay. In this paper we derive the transport equations for one-dimensional shock waves in nonlinear elastic media in which the shock wave can be defined as the amplitude of either [ ϵ ] 2 {\left [ \epsilon \right ]^2} , ( b ) \left ( b \right ) , [ v ] \left [ v \right ] or [ η ] \left [ \eta \right ] . Moreover, the dependent quantity can be any one of, or a linear combination of, the seven quantities behind the shock wave. It is shown that when the region ahead of the shock wave is under a homogeneous deformation, the amplitudes of [ v ] \left [ v \right ] , [ σ ] \left [ \sigma \right ] and [ ϵ ] \left [ \epsilon \right ] grow or decay simultaneously if ( a ) \left ( a \right ) [ ϵ ] 2 {\left [ \epsilon \right ]^2} is a strictly increasing function of [ η ] \left [ \eta \right ] , or ( b ) \left ( b \right ) the purely mechanical theory of shock waves is employed in which the effect of the entropy is ignored. Regardless of whether the effect of the entropy is ignored or not, there is no assurance that the amplitudes of [ v ] \left [ v \right ] , [ σ ] \left [ \sigma \right ] and [ ϵ ] \left [ \epsilon \right ] grow or decay simultaneously if the region ahead of the shock wave is not under a homogeneous deformation.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3