Planar representations of group actions on surfaces

Author:

Bozlee Sebastian,Lippert Samuel,Wootton Aaron

Abstract

The space of skeletal signatures was introduced as a simple but generally much coarser two-dimensional representation of the space of all signatures with which a group can act on a compact oriented surface. In this paper, we provide a complete characterization of the groups for which the skeletal signature space provides a complete and accurate picture of the structure of the full space of signatures. We show that such groups fall into three distinct families, and for two of these families, we show that for sufficiently large genus, the skeletal signature space depends essentially only on group order, and we explicitly describe these spaces. For the third family, we show that the skeletal signature space depends much more strongly upon group structure and provide some partial analysis of the structure of this space.

Publisher

American Mathematical Society

Reference14 articles.

1. A lower bound for the number of group actions on a compact Riemann surface;Anderson, James W.;Algebr. Geom. Topol.,2012

2. Gaps in the space of skeletal signatures;Anderson, James W.;Arch. Math. (Basel),2014

3. Asymptotic equivalence of group actions on surfaces and Riemann-Hurwitz solutions;Bozlee, Sebastian;Arch. Math. (Basel),2014

4. London Mathematical Society Lecture Note Series;Breuer, Thomas,2000

5. Classifying finite group actions on surfaces of low genus;Broughton, S. Allen;J. Pure Appl. Algebra,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3