Machine Learning and Information Theory Concepts towards an AI Mathematician

Author:

Bengio Yoshua,Malkin Nikolay

Abstract

The current state of the art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning. What could be missing? Can we learn something useful about that gap from how the brains of mathematicians go about their craft? This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities—which correspond to our intuition and habitual behaviors—but still lacks something important regarding system 2 abilities—which include reasoning and robust uncertainty estimation. It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement, which could guide future work in crafting an AI mathematician. The focus is not on proving a given theorem but on discovering new and interesting conjectures. The central hypothesis is that a desirable body of theorems better summarizes the set of all provable statements, for example, by having a small description length while at the same time being close (in terms of number of derivation steps) to many provable statements.

Funder

Canadian Institute for Advanced Research

Publisher

American Mathematical Society (AMS)

Reference49 articles.

1. Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

2. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, 2014.

3. Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

4. Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Neural Information Processing Systems, 2001.

5. Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. International Conference on Machine Learning, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3