Using unity approximations to construct nonstandard finite difference schemes for Bernoulli differential equations

Author:

Basu Treena,Buckmire Ron,Coovadia Zaheer,Diaz Mayra,Iniguez David,Scott Alexandra

Abstract

We explore the use of nonstandard finite difference (NSFD) methods in numerically approximating solutions to Bernoulli ordinary differential equations (BDEs) with constant coefficients. Specifically, we investigate the numerical performance of NSFD schemes that deploy unity approximations. A unity approximation can be created by introducing and replacing the number 1 1 with an approximation using non-local terms of the form 2 x k + 1 x k + 1 + x k \displaystyle \frac {2x_{k+1}}{x_{k+1}+x_k} where x k x k + 1 x_k \approx x_{k+1} on a discrete grid. Our NSFD schemes derived from unity approximations produce solutions that compare favorably with numerical solutions obtained using standard finite difference (SFD) schemes. The NSFD schemes presented here demonstrate their utility by possessing one or more of the following properties: enhanced accuracy, preserving positivity, and maintaining dynamic consistency (i.e., other essential qualities of the ODE pertaining to its domain and the asymptotic properties of the equilibria such as stability).

Publisher

American Mathematical Society

Reference26 articles.

1. Nonstandard finite difference schemes for a general predator-prey system;Dang, Quang A.;J. Comput. Sci.,2019

2. An exactly solvable model for the spread of disease;Mickens, Ronald E.;College Math. J.,2012

3. Nonstandard finite-difference schemes for the Lotka-Volterra systems: generalization of Mickens’s method;Roeger, Lih-Ing W.;J. Difference Equ. Appl.,2006

4. Non-standard finite difference schemes for investigating stability of a mathematical model of virus therapy for cancer;Yaghoubi, A. R.;Appl. Appl. Math.,2019

5. A non-standard numerical scheme for a generalized Gause-type predator-prey model;Moghadas, S. M.;Phys. D,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3