Explicit transient probabilities of various Markov models

Author:

Krinik Alan,von Bremen Hubertus,Ventura Ivan,Nguyen Uyen,Lin Jeremy,Lu Thuy,Luk Chon In,Yeh Jeffrey,Cervantes Luis,Lyche Samuel,Marian Brittney,Aljashamy Saif,Dela Mark,Oudich Ali,Ostadhassanpanjehali Pedram,Phey Lyheng,Perez David,Kath John,Demmin Malachi,Dawit Yoseph,Hoogendyk Christine,Kim Aaron,McDonough Matthew,Castillo Adam,Beecher David,Wong Weizhong,Ayeda Heba

Abstract

In analyzing finite-state Markov chains knowing the exact eigenvalues of the transition probability matrix P P is important information for predicting the explicit transient behavior of the system. Once the eigenvalues of P P are known, linear algebra and duality theory are used to find P k P^{k} where k = 2 , 3 , 4 , k= 2,3,4,\ldots . This article is about finding explicit eigenvalue formulas, that scale up with the dimension of P P for various Markov chains. Eigenvalue formulas and expressions of P k P^{k} are first presented when P P is tridiagonal and Toeplitz. These results are generalized to tridiagonal matrices with alternating birth-death probabilities. More general eigenvalue formulas and expression of P k P^{k} are obtained for non-tridiagonal transition matrices P P that have both catastrophe-like and birth-death transitions. Similar results for circulant matrices are also explored. Applications include finding probabilities of sample paths restricted to a strip and generalized ballot box problems. These results generalize to Markov processes with P k P^{k} being replaced by e Q t e^{Qt} where Q Q is a transition rate matrix.

Publisher

American Mathematical Society

Reference31 articles.

1. Springer Series in Statistics: Probability and its Applications;Anderson, William J.,1991

2. A “dynamic” proof of the Frobenius-Perron theorem for Metzler matrices;Arrow, Kenneth J.,1989

3. Powers of positive matrices;Bernhardt, Chris;Math. Mag.,2018

4. A Wiley-Interscience Publication;Davis, Philip J.,1979

5. [EHMP21] Emmanuel Ekwedike, Robert C. Hampshire, William A. Massey, and Jamol J. Pender, Group Symmetries and Bike Sharing for M/M/1/k Queueing Transcience, August 2021, preprint.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The exponential-dual matrix method: Applications to Markov chain analysis;Stochastic Processes and Functional Analysis;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3