A new variational principle, convexity, and supercritical Neumann problems

Author:

Cowan Craig,Moameni Abbas

Abstract

Utilizing a new variational principle that allows us to deal with problems beyond the usual locally compact structure, we study problems with a supercritical nonlinearity of the type (1) { Δ u + u = a ( x ) f ( u ) a m p ; in  Ω , u > 0 a m p ; in  Ω , u ν = 0 a m p ; on  Ω . \begin{equation}\tag {1} \begin {cases} -\Delta u + u = a(x) f(u) & \text {in $\Omega $}, \\ u>0 & \text {in $\Omega $}, \\ \frac {\partial u}{\partial \nu } = 0 & \text {on $\partial \Omega $}. \end{cases} \end{equation} To be more precise, Ω \Omega is a bounded domain in R N \mathbb {R}^N which satisfies certain symmetry assumptions, Ω \Omega is a domain of “ m m revolution" ( 1 m > N 1\leq m>N and the case of m = 1 m=1 corresponds to radial domains), and a > 0 a > 0 satisfies compatible symmetry assumptions along with monotonicity conditions. We find positive nontrivial solutions of (1) in the case of suitable supercritical nonlinearities f f by finding critical points of I I where \[ I ( u ) = Ω { a ( x ) F ( Δ u + u a ( x ) ) a ( x ) F ( u ) } d x I(u)=\int _\Omega \left \{ a(x) F^* \left ( \frac {-\Delta u + u}{a(x)} \right ) - a(x) F(u) \right \} dx \] over the closed convex cone K m K_m of nonnegative, symmetric, and monotonic functions in H 1 ( Ω ) H^1(\Omega ) where F = f F’=f and where F F^* is the Fenchel dual of F F . We mention two important comments: First, there is a hidden symmetry in the functional I I due to the presence of a convex function and its Fenchel dual that makes it ideal to deal with supercritical problems lacking the necessary compactness requirement. Second, the energy I I is not at all related to the classical Euler–Lagrange energy associated with (1). After we have proven the existence of critical points u u of I I on K m K_m , we then unitize a new abstract variational approach to show that these critical points in fact satisfy Δ u + u = a ( x ) f ( u ) -\Delta u + u = a(x) f(u) .

In the particular case of f ( u ) = | u | p 2 u f(u)=|u|^{p-2} u we show the existence of positive nontrivial solutions beyond the usual Sobolev critical exponent.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. A note on the radial solutions for the supercritical Hénon equation;Barutello, Vivina;J. Math. Anal. Appl.,2008

2. Layered solutions with unbounded mass for the Keller-Segel equation;Bonheure, Denis;J. Fixed Point Theory Appl.,2017

3. Multiple positive solutions of the stationary Keller-Segel system;Bonheure, Denis;Calc. Var. Partial Differential Equations,2017

4. Multi-layer radial solutions for a supercritical Neumann problem;Bonheure, Denis;J. Differential Equations,2016

5. Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions;Bonheure, Denis;Nonlinear Anal.,2016

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3