Bernoulli property for certain skew products over hyperbolic systems

Author:

Dong Changguang,Kanigowski Adam

Abstract

We study the Bernoulli property for a class of partially hyperbolic systems arising from skew products. More precisely, we consider a hyperbolic map ( T , M , μ ) (T,M,\mu ) , where μ \mu is a Gibbs measure, an aperiodic Hölder continuous cocycle ϕ : M R \phi :M\to \mathbb {R} with zero mean and a zero-entropy flow ( K t , N , ν ) (K_t,N,\nu ) . We then study the skew product T ϕ ( x , y ) = ( T x , K ϕ ( x ) y ) , \begin{equation*} T_\phi (x,y)=(Tx,K_{\phi (x)}y), \end{equation*} acting on ( M × N , μ × ν ) (M\times N,\mu \times \nu ) . We show that if ( K t ) (K_t) is of slow growth and has good equidistribution properties, then T ϕ T_\phi remains Bernoulli. In particular, our main result applies to ( K t ) (K_t) being a typical translation flow on a surface of genus 1 \geq 1 or a smooth reparametrization of isometric flows on T 2 \mathbb {T}^2 . This provides examples of non-algebraic, partially hyperbolic systems which are Bernoulli and for which the center is non-isometric (in fact might be weakly mixing).

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. Mathematical Surveys and Monographs;Aaronson, Jon,1997

2. Tim Austin, Scenery entropy as an invariant of RWRS processes, arXiv:1405.1468.

3. Weak mixing for interval exchange transformations and translation flows;Avila, Artur;Ann. of Math. (2),2007

4. Markov partitions for Axiom 𝐴 diffeomorphisms;Bowen, Rufus;Amer. J. Math.,1970

5. Lecture Notes in Mathematics, Vol. 470;Bowen, Rufus,1975

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential mixing implies Bernoulli;Annals of Mathematics;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3