Well-posedness of mean field games master equations involving non-separable local Hamiltonians

Author:

Ambrose David,Mészáros Alpár

Abstract

In this paper we construct short time classical solutions to a class of master equations in the presence of non-degenerate individual noise arising in the theory of mean field games. The considered Hamiltonians are non-separable and local functions of the measure variable, therefore the equation is restricted to absolutely continuous measures whose densities lie in suitable Sobolev spaces. Our results hold for smooth enough Hamiltonians, without any additional structural conditions as convexity or monotonicity.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Partial differential equation models in macroeconomics;Achdou, Yves;Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,2014

2. Mean field games with congestion;Achdou, Yves;Ann. Inst. H. Poincar\'{e} C Anal. Non Lin\'{e}aire,2018

3. Well-posedness of vortex sheets with surface tension;Ambrose, David M.;SIAM J. Math. Anal.,2003

4. Existence theory for non-separable mean field games in Sobolev spaces;Ambrose, David M.;Indiana Univ. Math. J.,2022

5. Strong solutions for time-dependent mean field games with non-separable Hamiltonians;Ambrose, David M.;J. Math. Pures Appl. (9),2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3