Some properties of the higher spin Laplace operator

Author:

Ding Chao,Ryan John

Abstract

The higher spin Laplace operator has been constructed recently as the generalization of the Laplacian in higher spin theory. This acts on functions taking values in arbitrary irreducible representations of the Spin group. In this paper, we first provide a decomposition of the higher spin Laplace operator in terms of Rarita-Schwinger operators. With such a decomposition, a connection between the fundamental solutions for the higher spin Laplace operator and the fundamental solutions for the Rarita-Schwinger operators is provided. Further, we show that the two components in this decomposition are conformally invariant differential operators. An alternative proof for the conformal invariance property is also pointed out, which can be connected to Knapp-Stein intertwining operators. Last but not least, we establish a Borel-Pompeiu type formula for the higher spin Laplace operator. As an application, we give a Green type integral formula.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. The higher spin Laplace operator;De Bie, Hendrik;Potential Anal.,2017

2. Iterated integral operators in Clifford analysis;Begehr, H.;Z. Anal. Anwendungen,1999

3. Generalized integral representations in Clifford analysis;Begehr, Heinrich;Complex Var. Elliptic Equ.,2006

4. Research Notes in Mathematics;Brackx, F.,1982

5. Rarita-Schwinger type operators in Clifford analysis;Bureš, J.;J. Funct. Anal.,2001

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary value problems in Euclidean space for bosonic Laplacians;Complex Analysis and its Synergies;2024-03-21

2. Bochner-Martinelli Formula for Higher Spin Operators of Several ℝ6 Variables;Chinese Annals of Mathematics, Series B;2023-07

3. Polynomial null solutions to bosonic Laplacians, bosonic Bergman and Hardy spaces;Proceedings of the Edinburgh Mathematical Society;2022-10-13

4. Green's formulas and Poisson's equation for bosonic Laplacians;Mathematical Methods in the Applied Sciences;2020-09-29

5. Integral Formulas for Higher Order Conformally Invariant Fermionic Operators;Advances in Applied Clifford Algebras;2019-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3