Two weight estimates with matrix measures for well localized operators

Author:

Bickel Kelly,Culiuc Amalia,Treil Sergei,Wick Brett

Abstract

In this paper, we give necessary and sufficient conditions for weighted L 2 L^2 estimates with matrix-valued measures of well localized operators. Namely, we seek estimates of the form \[ T ( W f ) L 2 ( V ) C f L 2 ( W ) , \| T(\mathbf {W} f)\|_{L^2(\mathbf {V})} \le C\|f\|_{L^2(\mathbf {W})}, \] where T T is formally an integral operator with additional structure, W , V \mathbf {W}, \mathbf {V} are matrix measures, and the underlying measure space possesses a filtration. The characterization we obtain is of Sawyer type; in particular, we show that certain natural testing conditions obtained by studying the operator and its adjoint on indicator functions suffice to determine boundedness. Working in both the matrix-weighted setting and the setting of measure spaces with arbitrary filtrations requires novel modifications of a T1 proof strategy; a particular benefit of this level of generality is that we obtain polynomial estimates on the complexity of certain Haar shift operators.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Bounds for the Hilbert transform with matrix 𝐴₂ weights;Bickel, Kelly;J. Funct. Anal.,2016

2. Well-localized operators on matrix weighted 𝐿² spaces;Bickel, Kelly;Houston J. Math.,2016

3. A study of the matrix Carleson embedding theorem with applications to sparse operators;Bickel, Kelly;J. Math. Anal. Appl.,2016

4. Uniform sparse domination of singular integrals via dyadic shifts;Culiuc, Amalia;Math. Res. Lett.,2018

5. A. Culiuc and S. Treil, The Carleson embedding theorem with matrix weights, \url{http://arxiv.org/abs/1508.01716} (2015).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-variable characterizations and their applications of matrix-weighted Triebel–Lizorkin spaces;Journal of Mathematical Analysis and Applications;2024-01

2. Two‐weight Tb theorems for well‐localized operators;Mathematische Nachrichten;2021-04-27

3. Failure of the matrix weighted bilinear Carleson embedding theorem;Linear Algebra and its Applications;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3