Asymptotic expansions of eigenvalues by both the Crouzeix–Raviart and enriched Crouzeix–Raviart elements

Author:

Hu Jun,Ma Limin

Abstract

Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix–Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart–Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart–Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference37 articles.

1. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods;Armentano, María G.;Electron. Trans. Numer. Anal.,2004

2. Direct and inverse error estimates for finite elements with mesh refinements;Babuška, I.;Numer. Math.,1979

3. Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues;Babuška, I.;SIAM J. Numer. Anal.,1987

4. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems;Babuška, I.;Math. Comp.,1989

5. Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation;Blum, H.;J. Comput. Math.,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3