The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation: IV. Time dependent coefficients

Author:

Leach J.

Abstract

In this paper, we consider an initial-value problem for the Korteweg-de Vries equation with time dependent coefficients. The normalized variable coefficient Korteweg-de Vries equation considered is given by u t + Φ ( t ) u u x + Ψ ( t ) u x x x = 0 , > x > , t > 0 , \begin{equation*} u_{t}+ \Phi (t) u u_{x}+ \Psi (t) u_{xxx}=0, \quad -\infty >x>\infty , \quad t>0, \end{equation*} where x x and t t represent dimensionless distance and time respectively, whilst Φ ( t ) \Phi (t) , Ψ ( t ) \Psi (t) are given functions of t ( > 0 ) t (>0) . In particular, we consider the case when the initial data has a discontinuous expansive step, where u ( x , 0 ) = u + u(x,0)=u_{+} for x 0 x \ge 0 and u ( x , 0 ) = u u(x,0)=u_{-} for x > 0 x>0 . We focus attention on the case when Φ ( t ) = t δ \Phi (t)=t^{\delta } (with δ > 2 3 \delta >-\frac {2}{3} ) and Ψ ( t ) = 1 \Psi (t)=1 . The constant states u + u_{+} , u u_{-} ( > u + >u_{+} ) and δ \delta are problem parameters. The method of matched asymptotic coordinate expansions is used to obtain the large- t t asymptotic structure of the solution to this problem, which exhibits the formation of an expansion wave in x u ( δ + 1 ) t ( δ + 1 ) x \ge \frac {u_{-} }{(\delta +1)}t^{(\delta +1)} as t t \to \infty , while the solution is oscillatory in x > u ( δ + 1 ) t ( δ + 1 ) x>\frac {u_{-}}{(\delta +1)}t^{(\delta +1)} as t t \to \infty . We conclude with a brief discussion of the structure of the large- t t solution of the initial-value problem when the initial data is step-like being continuous with algebraic decay as | x | |x| \to \infty , with u ( x , t ) u + u(x,t) \to u_{+} as x x \to \infty and u ( x , t ) u ( > u + ) u(x,t) \to u_{-} (>u_{+}) as x x \to -\infty .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference39 articles.

1. Asymptotic solutions of the Korteweg-deVries equation;Ablowitz, M. J.;Studies in Appl. Math.,1976

2. National Bureau of Standards Applied Mathematics Series, No. 55,1965

3. J. Boussinesq, Théorie de l’intumescence liquid appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, Comptes Rendus Acad. Sci. 72 (1871) 755-759.

4. Mathematics and its Applications;Boyd, John P.,1998

5. Variable coefficient KdV equations and waves in elastic tubes;Cascaval, Radu C.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3