Critical 𝐿^{𝑝}-differentiability of 𝐵𝑉^{}𝔸-maps and canceling operators

Author:

Raiţă Bogdan

Abstract

We give a generalization of Dorronsoro’s theorem on critical L p \mathrm {L}^p -Taylor expansions for B V k \mathrm {BV}^k -maps on R n \mathbb {R}^n ; i.e., we characterize homogeneous linear differential operators A \mathbb {A} of k k th order such that D k j u D^{k-j}u has j j th order L n / ( n j ) \mathrm {L}^{n/(n-j)} -Taylor expansion a.e. for all u B V loc A u\in \mathrm {BV}^\mathbb {A}_{\operatorname {loc}} (here j = 1 , , k j=1,\ldots , k , with an appropriate convention if j n j\geq n ). The space B V loc A \mathrm {BV}^\mathbb {A}_{\operatorname {loc}} , a single framework covering B V \mathrm {BV} , B D \mathrm {BD} , and B V k \mathrm {BV}^k , consists of those locally integrable maps u u such that A u \mathbb {A} u is a Radon measure on R n \mathbb {R}^n .

For j = 1 , , min { k , n 1 } j=1,\ldots ,\min \{k, n-1\} , we show that the L p \mathrm {L}^p -differentiability property above is equivalent to Van Schaftingen’s elliptic and canceling condition for A \mathbb {A} . For j = n , , k j=n,\ldots , k , ellipticity is necessary, but cancellation is not. To complete the characterization, we determine the class of elliptic operators A \mathbb {A} such that the estimate (1) D k n u L C A u L 1 \begin{align}\tag {1} \|D^{k-n}u\|_{\mathrm {L}^\infty }\leqslant C\|\mathbb {A} u\|_{\mathrm {L}^1} \end{align} holds for all vector fields u C c u\in \mathrm {C}^\infty _c . Surprisingly, the (computable) condition on A \mathbb {A} such that \eqref{eq:abs} holds is strictly weaker than cancellation.

The results on L p \mathrm {L}^p -differentiability can be formulated as sharp pointwise regularity results for overdetermined elliptic systems A u = μ , \begin{align*} \mathbb {A} u=\mu , \end{align*} where μ \mu is a Radon measure, thereby giving a variant for the limit case p = 1 p=1 of a theorem of Calderón and Zygmund which was not covered before.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference54 articles.

1. Continuity properties of solutions to the 𝑝-Laplace system;Alberico, Angela;Adv. Calc. Var.,2017

2. On the 𝐿^{𝑝}-differentiability of certain classes of functions;Alberti, Giovanni;Rev. Mat. Iberoam.,2014

3. Sulla diseguaglianza di Sobolev in spazi di Lorentz;Alvino, Angelo;Boll. Un. Mat. Ital. A (5),1977

4. Fine properties of functions with bounded deformation;Ambrosio, Luigi;Arch. Rational Mech. Anal.,1997

5. L. Ambrosio, A. Ponce, and R. Rodiac, Critical weak-𝐿^{𝑝} differentiability of singular integrals, arXiv:1810.03924 (2018).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3