Non-linear singularity formation for circular vortex sheets

Author:

Murray Ryan,Wilcox Galen

Abstract

We study the evolution of vortex sheets according to the Birkhoff-Rott equation, which describe the motion of sharp shear interfaces governed by the incompressible Euler equation in two dimensions. In a recent work, the authors demonstrated within this context a marginal linear stability of circular vortex sheets, standing in sharp contrast with classical instability of the flat vortex sheet, which is known as the Kelvin-Helmholtz instability. This article continues that analysis by investigating how non-linear effects induce singularity formation near the circular vortex sheet. In high-frequency regimes, the singularity formation is primarily driven by a complex-valued, conjugated Burgers equation, which we study by modifying a classical argument from hyperbolic conservation laws. This provides a deeper understanding of the mechanisms driving the breakdown of circular vortex sheets, which are observed both numerically and experimentally.

Funder

North Carolina State University

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference28 articles.

1. Ana C. Barbosa Aguiar, Peter L. Read, Robin D. Wordsworth, Tara Salter, and Y. Hiro Yamazaki, A laboratory model of Saturn’s north polar hexagon, Icarus 206 (2010), 755–763.

2. K. Baines, Thomas Momary, Leigh Fletcher, Joo Hyeon Kim, A. Showman, S. Atreya, R. Brown, B. Buratti, R. Clark, and P. Nicholson, Saturn’s north polar region at depth: The north polar hexagon and north polar cyclone observed over two years by Cassini/VIMS, Geophys. Res. Abstr. 11 (2009), 3375.

3. Cauchy integral and singular integral operator over closed Jordan curves;Blaya, Ricardo Abreu;Monatsh. Math.,2015

4. Singular solutions and ill-posedness for the evolution of vortex sheets;Caflisch, Russel E.;SIAM J. Math. Anal.,1989

5. Global vortex sheet solutions of Euler equations in the plane;Duchon, Jean;J. Differential Equations,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3