On the weak Lefschetz property for height four equigenerated complete intersections

Author:

Boij Mats,Migliore Juan,Miró-Roig Rosa,Nagel Uwe

Abstract

We consider the conjecture that all artinian height 4 complete intersections of forms of the same degree d d have the Weak Lefschetz Property (WLP). We translate this problem to one of studying the general hyperplane section of a certain smooth curve in P 3 \mathbb P^3 , and our main tools are the Socle Lemma of Huneke and Ulrich together with a careful liaison argument. Our main results are (i) a proof that the property holds for d = 3 , 4 d=3,4 and 5; (ii) a partial result showing maximal rank in a non-trivial but incomplete range, cutting in half the previous unknown range; and (iii) a proof that maximal rank holds in a different range, even without assuming that all the generators have the same degree. We furthermore conjecture that if there were to exist any height 4 complete intersection generated by forms of the same degree and failing WLP then there must exist one (not necessarily the same one) failing by exactly one (in a sense that we make precise). Based on this conjecture we outline an approach to proving WLP for all equigenerated complete intersections in four variables. Finally, we apply our results to the Jacobian ideal of a smooth surface in  P 3 \mathbb P^3 .

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference24 articles.

1. Complete intersections of quadrics and the weak Lefschetz property;Alzati, Alberto;Collect. Math.,2019

2. Geometric consequences of extremal behavior in a theorem of Macaulay;Bigatti, Anna;Trans. Amer. Math. Soc.,1994

3. The non-Lefschetz locus;Boij, Mats;J. Algebra,2018

4. The stability of certain vector bundles on 𝑃ⁿ;Bohnhorst, Guntram,1992

5. Syzygy bundles on ℙ² and the weak Lefschetz property;Brenner, Holger;Illinois J. Math.,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perazzo hypersurfaces and the weak Lefschetz property;Journal of Algebra;2024-05

2. List of Problems;Springer INdAM Series;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3