Modular flats of oriented matroids and poset quasi-fibrations

Author:

Mücksch Paul

Abstract

We study the combinatorics of modular flats of oriented matroids and the topological consequences for their Salvetti complexes. We show that the natural map to the localized Salvetti complex at a modular flat of corank one is what we call a poset quasi-fibration – a notion derived from Quillen’s fundamental Theorem B from algebraic K K -theory. As a direct consequence, the Salvetti complex of an oriented matroid whose geometric lattice is supersolvable is a K ( π , 1 ) K(\pi ,1) -space – a generalization of the classical result for supersolvable hyperplane arrangements due to Falk, Randell and Terao. Furthermore, the fundamental group of the Salvetti complex of a supersolvable oriented matroid is an iterated semidirect product of finitely generated free groups – analogous to the realizable case.

Our main tools are discrete Morse theory, the shellability of certain subcomplexes of the covector complex of an oriented matroid, a nice combinatorial decomposition of poset fibers of the localization map, and an isomorphism of covector posets associated to modular elements.

We provide a simple construction of supersolvable oriented matroids. This gives many non-realizable supersolvable oriented matroids and by our main result aspherical CW-complexes.

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Reference28 articles.

1. [BD22] C. Bibby and E. Delucchi, Supersolvable posets and fiber-type abelian arrangements, arXiv Preprint, arXiv:2202.11996, 2022.

2. Encyclopedia of Mathematics and its Applications;Björner, Anders,1999

3. Modular constructions for combinatorial geometries;Brylawski, Tom;Trans. Amer. Math. Soc.,1975

4. On discrete Morse functions and combinatorial decompositions;Chari, Manoj K.;Discrete Math.,2000

5. On the homotopy type of the Salvetti complexes determined by simplicial arrangements;Cordovil, Raul;European J. Combin.,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3