On groups of Hölder diffeomorphisms and their regularity

Author:

Nenning David,Rainer Armin

Abstract

We study the set D n , β ( R d ) \mathcal D^{n,\beta }(\mathbb R^d) of orientation preserving diffeomorphisms of R d \mathbb R^d which differ from the identity by a Hölder C 0 n , β C^{n,\beta }_0 -mapping, where n N 1 n \in \mathbb N_{\ge 1} and β ( 0 , 1 ] \beta \in (0,1] . We show that D n , β ( R d ) \mathcal D^{n,\beta }(\mathbb R^d) forms a group, but left translations in D n , β ( R d ) \mathcal D^{n,\beta }(\mathbb R^d) are in general discontinuous. The groups D n , β ( R d ) := α > β D n , α ( R d ) \mathcal D^{n,\beta -}(\mathbb R^d) := \bigcap _{\alpha > \beta } \mathcal D^{n,\alpha }(\mathbb R^d) (with its natural Fréchet topology) and D n , β + ( R d ) := α > β D n , α ( R d ) \mathcal D^{n,\beta +}(\mathbb R^d) := \bigcup _{\alpha > \beta } \mathcal D^{n,\alpha }(\mathbb R^d) (with its natural inductive locally convex topology) however are C 0 , ω C^{0,\omega } Lie groups for any slowly vanishing modulus of continuity ω \omega . In particular, D n , β ( R d ) \mathcal D^{n,\beta -}(\mathbb R^d) is a topological group and a so-called half-Lie group (with smooth right translations). We prove that the Hölder spaces C 0 n , β C^{n,\beta }_0 are ODE closed, in the sense that pointwise time-dependent C 0 n , β C^{n,\beta }_0 -vector fields u u have unique flows Φ \Phi in D n , β ( R d ) \mathcal D^{n,\beta }(\mathbb R^d) . This includes, in particular, all Bochner integrable functions u L 1 ( [ 0 , 1 ] , C 0 n , β ( R d , R d ) ) u \in L^1([0,1],C^{n,\beta }_0(\mathbb R^d,\mathbb R^d)) . For the latter and n 2 n\ge 2 , we show that the flow map L 1 ( [ 0 , 1 ] , C 0 n , β ( R d , R d ) ) C ( [ 0 , 1 ] , D n , α ( R d ) ) L^1([0,1],C^{n,\beta }_0(\mathbb R^d,\mathbb R^d)) \to C([0,1],\mathcal D^{n,\alpha }(\mathbb R^d)) , u Φ u \mapsto \Phi , is continuous (even C 0 , β α C^{0,\beta -\alpha } ), for every α > β \alpha > \beta . As an application we prove that the corresponding Trouvé group G n , β ( R d ) \mathcal G_{n,\beta }(\mathbb R^d) from image analysis coincides with the connected component of the identity of D n , β ( R d ) \mathcal D^{n,\beta }(\mathbb R^d) .

Funder

Austrian Science Fund

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Integral manifolds for Carathéodory type differential equations in Banach spaces;Aulbach, Bernd,1996

2. On completeness of groups of diffeomorphisms;Bruveris, Martins;J. Eur. Math. Soc. (JEMS),2017

3. Regularity of the composition operator in spaces of Hölder functions;de la Llave, R.;Discrete Contin. Dynam. Systems,1999

4. Mathematical Surveys, No. 15;Diestel, J.,1977

5. C.-A. Faure, Théorie de la différentiation dans les espaces convenables, Ph.D. thesis, Université de Genéve, 1991.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arc-smooth functions and cuspidality of sets;Journal d'Analyse Mathématique;2024-09-12

2. Hölder–Zygmund classes on smooth curves;Zeitschrift für Analysis und ihre Anwendungen;2022-08-23

3. Manifolds of Mappings for Continuum Mechanics;Advances in Mechanics and Mathematics;2020

4. On time-dependent Besov vector fields and the regularity of their flows;Proceedings of the American Mathematical Society;2019-10-28

5. On the Group of Almost Periodic Diffeomorphisms and its Exponential Map;International Mathematics Research Notices;2019-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3