Application of waist inequality to entropy and mean dimension

Author:

Shi Ruxi,Tsukamoto Masaki

Abstract

Waist inequality is a fundamental inequality in geometry and topology. We apply it to the study of entropy and mean dimension of dynamical systems. We consider equivariant continuous maps π : ( X , T ) ( Y , S ) \pi : (X, T) \to (Y, S) between dynamical systems and assume that the mean dimension of the domain ( X , T ) (X, T) is larger than the mean dimension of the target ( Y , S ) (Y, S) . We exhibit several situations for which the maps π \pi necessarily have positive conditional metric mean dimension. This study has interesting consequences to the theory of topological conditional entropy. In particular it sheds new light on a celebrated result of Lindenstrauss and Weiss [Israel J. Math. 115 (2000), pp. 1–24] about minimal dynamical systems non-embeddable in [ 0 , 1 ] Z [0,1]^{\mathbb {Z}} .

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. [Al65] F. J. Almgren, The theory of varifolds - a variational calculus in the large for the 𝑘-dimensional area integrated, unpublished. Mimeographed notes, 1965.

2. A family of maps with many small fibers;Alpert, Hannah;J. Topol. Anal.,2015

3. North-Holland Mathematics Studies;Auslander, Joseph,1988

4. Entropy for group endomorphisms and homogeneous spaces;Bowen, Rufus;Trans. Amer. Math. Soc.,1971

5. New Mathematical Monographs;Downarowicz, Tomasz,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3