A class of inverse curvature flows and 𝐿^{𝑝} dual Christoffel-Minkowski problem

Author:

Ding Shanwei,Li Guanghan

Abstract

In this paper, we consider a large class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space R n + 1 \mathbb {R}^{n+1} with speed ψ u α ρ δ f β \psi u^\alpha \rho ^\delta f^{-\beta } , where ψ \psi is a smooth positive function on unit sphere, u u is the support function of the hypersurface, ρ \rho is the radial function, f f is a smooth, symmetric, homogenous of degree one, positive function of the principal curvatures of the hypersurface on a convex cone. When ψ = 1 \psi =1 , we prove that the flow exists for all time and converges to infinity if α + δ + β 1 \alpha +\delta +\beta \leqslant 1 , and α 0 > β \alpha \leqslant 0>\beta , while in case α + δ + β > 1 \alpha +\delta +\beta >1 , α , δ 0 > β \alpha ,\delta \leqslant 0>\beta , the flow blows up in finite time, and where we assume the initial hypersurface to be strictly convex. In both cases the properly rescaled flows converge to a sphere centered at the origin. In particular, the results of Gerhardt [J. Differential Geom. 32 (1990), pp. 299–314; Calc. Var. Partial Differential Equations 49 (2014), pp. 471–489] and Urbas [Math. Z. 205 (1990), pp. 355–372] can be recovered by putting α = δ = 0 \alpha =\delta =0 . Our previous works [Proc. Amer. Math. Soc. 148 (2020), pp. 5331–5341; J. Funct. Anal. 282 (2022), p. 38] and Hu, Mao, Tu and Wu [J. Korean Math. Soc. 57 (2020), pp. 1299–1322] can be recovered by putting δ = 0 \delta =0 and α = 0 \alpha =0 respectively. By the convergence of these flows, we can give a new proof of uniqueness theorems for solutions to L p L^p -Minkowski problem and L p L^p -Christoffel-Minkowski problem with constant prescribed data. Similarly, we consider the L p L^p dual Christoffel-Minkowski problem and prove a uniqueness theorem for solutions to L p L^p dual Minkowski problem and L p L^p dual Christoffel-Minkowski problem with constant prescribed data. At last, we focus on the long time existence and convergence of a class of anisotropic flows (i.e. for general function ψ \psi ). The final result not only gives a new proof of many previously known solutions to L p L^p dual Minkowski problem, L p L^p -Christoffel-Minkowski problem, etc. by such anisotropic flows, but also provides solutions to L p L^p dual Christoffel-Minkowski problem with some conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference68 articles.

1. Existence and uniqueness of a convex surface with a given integral curvature;Alexandroff, A.;C. R. (Doklady) Acad. Sci. URSS (N.S.),1942

2. Contraction of convex hypersurfaces in Euclidean space;B. Andrews;Calc. Var. Partial Differential Equations,1994

3. Contraction of convex hypersurfaces by their affine normal;Andrews, Ben;J. Differential Geom.,1996

4. Gauss curvature flow: the fate of the rolling stones;B. Andrews;Invent. Math.,1999

5. Monotone quantities and unique limits for evolving convex hypersurfaces;Andrews, Ben;Internat. Math. Res. Notices,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3