On modified Einstein tensors and two smooth invariants of compact manifolds

Author:

Labbi Mohammed Larbi

Abstract

Let ( M , g ) (M,g) be a Riemannian n n -manifold, we denote by R i c Ric and S c a l Scal the Ricci and the scalar curvatures of g g . For each real number k > n k>n , the modified Einstein tensors denoted E i n k \mathrm {Ein}_k is defined to be E i n k S c a l g k R i c \mathrm {Ein}_k ≔Scal\, g -kRic . Note that the usual Einstein tensor coincides with one half of E i n 2 \mathrm {Ein}_2 and E i n 0 = S c a l . g \mathrm {Ein}_0=Scal.g . It turns out that all these new modified tensors, for 0 > k > n 0>k>n , are still gradients of the total scalar curvature functional but with respect to modified integral scalar products. The positivity of E i n k \mathrm {Ein}_k for some positive k k implies the positivity of all E i n l \mathrm {Ein}_l with 0 l k 0\leq l\leq k and so we define a smooth invariant E i n ( M ) \mathbf {Ein}(M) of M M to be the supremum of positive k’s that renders E i n k \mathrm {Ein}_k positive. By definition E i n ( M ) [ 0 , n ] \mathbf {Ein}(M)\in [0,n] , it is zero if and only if M M has no positive scalar curvature metrics and it is maximal equal to n n if M M possesses an Einstein metric with positive scalar curvature. In some sense, E i n ( M ) \mathbf {Ein}(M) measures how far M M is away from admitting an Einstein metric of positive scalar curvature.

In this paper, we prove that E i n ( M ) 2 \mathbf {Ein}(M)\geq 2 , for any closed simply connected manifold M M of positive scalar curvature and with dimension 5 \geq 5 . Furthermore, for a compact 2 2 -connected manifold M M with dimension 6 \geq 6 and of positive scalar curvature, we show that E i n ( M ) 3 \mathbf {Ein}(M)\geq 3 . We demonstrate as well that the invariant E i n ( M ) \mathbf {Ein} (M) of a manifold M M increases after doing a surgery on M M or by assuming that M M has higher connectivity. We show that the condition E i n ( M ) n 2 \mathbf {Ein}(M)\leq n-2 does not imply any restriction on the first fundamental group of M M . We define and prove similar properties for an analogous invariant namely e i n ( M ) \mathbf {ein}(M) . The paper contains several open questions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. University Lecture Series;Berger, Marcel,2000

2. Classics in Mathematics;Besse, Arthur L.,2008

3. Gromov’s macroscopic dimension conjecture;Bolotov, Dmitry V.;Algebr. Geom. Topol.,2006

4. Highly connected manifolds of positive 𝑝-curvature;Botvinnik, Boris;Trans. Amer. Math. Soc.,2014

5. Compact manifolds with positive Γ₂-curvature;Botvinnik, Boris;Differential Geom. Appl.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On two constants of a positive conformal class;Colloquium Mathematicum;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3