The Abresch–Rosenberg shape operator and applications

Author:

Espinar José,Trejos Haimer

Abstract

There exists a holomorphic quadratic differential defined on any H H -surface immersed in the homogeneous space E ( κ , τ ) {\mathbb {E}(\kappa , \tau )} given by U. Abresch and H. Rosenberg, called the Abresch–Rosenberg differential. However, there was no Codazzi pair on such an H H -surface associated with the Abresch–Rosenberg differential when τ 0 \tau \neq 0 . The goal of this paper is to find a geometric Codazzi pair defined on any H H -surface in E ( κ , τ ) {\mathbb {E}(\kappa , \tau )} , when τ 0 \tau \neq 0 , whose ( 2 , 0 ) (2,0) -part is the Abresch–Rosenberg differential. We denote such a pair as ( I , I I AR ) (I,II_\textrm {AR}) , were I I is the usual first fundamental form of the surface and I I AR II_\textrm {AR} is the Abresch–Rosenberg second fundamental form.

In particular, this allows us to compute a Simons’ type equation for H H -surfaces in E ( κ , τ ) {\mathbb {E}(\kappa , \tau )} . We apply such Simons’ type equation, first, to study the behavior of complete H H -surfaces Σ \Sigma of finite Abresch–Rosenberg total curvature immersed in E ( κ , τ ) {\mathbb {E}(\kappa , \tau )} . Second, we estimate the first eigenvalue of any Schrödinger operator L = Δ + V L= \Delta + V , V V continuous, defined on such surfaces. Finally, together with the Omori–Yau maximum principle, we classify complete H H -surfaces in E ( κ , τ ) {\mathbb {E}(\kappa , \tau )} , τ 0 \tau \neq 0 , satisfying a lower bound on H H depending on κ \kappa , τ \tau , and an upper bound on the norm of the traceless I I AR II_\textrm {AR} , a gap theorem.

Funder

Ministerio de Educación, Cultura y Deporte

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. A Hopf differential for constant mean curvature surfaces in 𝑆²×𝑅 and 𝐻²×𝑅;Abresch, Uwe;Acta Math.,2004

2. Generalized Hopf differentials;Abresch, Uwe;Mat. Contemp.,2005

3. The Codazzi equation for surfaces;Aledo, Juan A.;Adv. Math.,2010

4. On the first stability eigenvalue of constant mean curvature surfaces into homogeneous 3-manifolds;Alías, Luis J.;Mediterr. J. Math.,2015

5. Simons type equation in 𝕊²×ℝ and ℍ²×ℝ and applications;Batista da Silva, Márcio Henrique;Ann. Inst. Fourier (Grenoble),2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on parallel mean curvature surfaces and Codazzi operators;Archiv der Mathematik;2024-08-08

2. Simons type formulas for surfaces in Sol3 and applications;Bulletin of Mathematical Sciences;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3