Finite subdivision rules

Author:

Cannon J.,Floyd W.,Parry W.

Abstract

We introduce and study finite subdivision rules. A finite subdivision rule R \mathcal {R} consists of a finite 2-dimensional CW complex S R S_{\mathcal {R}} , a subdivision R ( S R ) \mathcal {R}(S_{\mathcal {R}}) of S R S_{\mathcal {R}} , and a continuous cellular map φ R : R ( S R ) S R \varphi _{\mathcal {R}}\colon \thinspace \mathcal {R}(S_{\mathcal {R}}) \to S_{\mathcal {R}} whose restriction to each open cell is a homeomorphism. If R \mathcal {R} is a finite subdivision rule, X X is a 2-dimensional CW complex, and f : X S R f\colon \thinspace X\to S_{\mathcal {R}} is a continuous cellular map whose restriction to each open cell is a homeomorphism, then we can recursively subdivide X X to obtain an infinite sequence of tilings. We wish to determine when this sequence of tilings is conformal in the sense of Cannon’s combinatorial Riemann mapping theorem. In this setting, it is proved that the two axioms of conformality can be replaced by a single axiom which is implied by either of them, and that it suffices to check conformality for finitely many test annuli. Theorems are given which show how to exploit symmetry, and many examples are computed.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference18 articles.

1. A “regular” pentagonal tiling of the plane;Bowers, Philip L.;Conform. Geom. Dyn.,1997

2. C-NC J. W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Univ. Press, New York, 1991, pp. 315–369.

3. The combinatorial Riemann mapping theorem;Cannon, James W.;Acta Math.,1994

4. The method of successive approximations for functional equations;Kantorovitch, L.;Acta Math.,1939

5. Sufficiently rich families of planar rings;Cannon, J. W.;Ann. Acad. Sci. Fenn. Math.,1999

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Levy and Thurston obstructions of finite subdivision rules;Ergodic Theory and Dynamical Systems;2023-12-15

2. Adaptive stochastic fractal search algorithm for multi-objective optimization;Swarm and Evolutionary Computation;2023-12

3. On the Pullback Relation on Curves Induced by a Thurston Map;In the Tradition of Thurston II;2022

4. Thermodynamic Formalism for Coarse Expanding Dynamical Systems;Communications in Mathematical Physics;2021-04-10

5. Expansion properties for finite subdivision rules II;Conformal Geometry and Dynamics of the American Mathematical Society;2020-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3