A normal form for admissible characters in the sense of Lynch

Author:

Baur Karin

Abstract

Parabolic subalgebras p \mathfrak {p} of semisimple Lie algebras define a Z \mathbb {Z} -grading of the Lie algebra. If there exists a nilpotent element in the first graded part of g \mathfrak {g} on which the adjoint group of p \mathfrak {p} acts with a dense orbit, the parabolic subalgebra is said to be nice. The corresponding nilpotent element is also called admissible. Nice parabolic subalgebras of simple Lie algebras have been classified. In the case of Borel subalgebras a Richardson element of g 1 \mathfrak {g}_1 is exactly one that involves all simple root spaces. It is, however, difficult to write down such nilpotent elements for general parabolic subalgebras. In this paper we give an explicit construction of admissible elements in g 1 \mathfrak {g}_1 that uses as few root spaces as possible.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference9 articles.

1. The Δ-filtered modules without self-extensions for the Auslander algebra of 𝑘[𝑇]/⟨𝑇ⁿ⟩;Brüstle, Thomas;Algebr. Represent. Theory,1999

2. [BW]bw K. Baur, N. R. Wallach, Nice parabolic subalgebras of reductive Lie algebras, Represent. Theory 9 (electronic), Amer. Math. Soc. (2005), 1–29.

3. Van Nostrand Reinhold Mathematics Series;Collingwood, David H.,1993

4. Prehomogeneous spaces for parabolic group actions in classical groups;Goodwin, Simon;J. Algebra,2004

5. Encyclopedia of Mathematics and its Applications;Goodman, Roe,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quiver-graded Richardson orbits;Communications in Algebra;2019-04-15

2. On the nilradical of a parabolic subgroup;Symmetry: Representation Theory and Its Applications;2014

3. Richardson Elements for Parabolic Subgroups of Classical Groups in Positive Characteristic;Algebras and Representation Theory;2007-06-19

4. Richardson elements for classical Lie algebras;Journal of Algebra;2006-03

5. Erratum: A normal form for admissible characters in the sense of Lynch;Representation Theory of the American Mathematical Society;2005-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3