Wonderful varieties of type 𝐷

Author:

Bravi Paolo,Pezzini Guido

Abstract

Let G G be a connected semisimple group over C \mathbb C , whose simple components have type A \mathsf A or D \mathsf D . We prove that wonderful G G -varieties are classified by means of combinatorial objects called spherical systems. This is a generalization of a known result of Luna for groups of type A \mathsf A ; thanks to another result of Luna, this implies also the classification of all spherical G G -varieties for the groups G G we are considering. For these G G we also prove the smoothness of the embedding of Demazure.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference18 articles.

1. Equivariant completions of homogeneous algebraic varieties by homogeneous divisors;Ahiezer, Dmitry;Ann. Global Anal. Geom.,1983

2. Moduli of affine schemes with reductive group action;Alexeev, Valery;J. Algebraic Geom.,2005

3. On root systems and an infinitesimal classification of irreducible symmetric spaces;Araki, Shôrô;J. Math. Osaka City Univ.,1962

4. Classification des espaces homogènes sphériques;Brion, M.;Compositio Math.,1987

5. On spherical varieties of rank one (after D. Ahiezer, A. Huckleberry, D. Snow);Brion, Michel,1989

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the extended weight monoid of a spherical homogeneous space and its applications to spherical functions;Representation Theory of the American Mathematical Society;2023-09-15

2. A classification of spherical Schubert varieties in the Grassmannian;Proceedings - Mathematical Sciences;2022-12-01

3. Characterizing smooth affine spherical varieties via the automorphism group;Journal de l’École polytechnique — Mathématiques;2021-02-19

4. Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical non-Hermitian cases;Kyoto Journal of Mathematics;2017-12-01

5. Projective normality of model varieties and related results;Representation Theory of the American Mathematical Society;2016-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3